Foreword

This is always such a pleasure to be writing this foreword and to be releasing the Canada-Nunavut Geoscience Office (CNGO) Summary of Activities 2017 volume. The publication was conceived by the former Chief Geologist, David Mate, and the first edition covered the year 2012. The papers in the volume highlight most, but not all, of the work that the CNGO conducts, as independent research or as collaborative projects with other organizations.

The CNGO was established in 1999 by the federal and territorial governments following the creation of Nunavut, and is Nunavut’s ‘de facto’ geological survey. It operates under a tripartite agreement between Natural Resources Canada (NRCan; Lands and Minerals Sector, Geological Survey of Canada), Indigenous and Northern Affairs Canada (INAC) and the Government of Nunavut’s Department of Economic Development and Transportation (GN-EDT). Each of the three partners sits on the CNGO management board, along with an ex officio representative from Nunavut Tunngavik Incorporated (NTI), which provides scientific and operational oversight for the office.

The CNGO’s mission is to provide Nunavut with accessible geoscience information and expertise to support the following activities: responsible resource exploration and development; responsible infrastructure development; geoscience-capacity building; geoscience education and training; and geoscience awareness and outreach. To accomplish this mission, the CNGO maps, interprets and reports on the geological features and resources of Nunavut, commonly in collaboration with geoscience partners, and engages the public on key geoscience issues.

The CNGO has six professional staff members, and initiates and conducts a wide range of collaborative geoscience research with partners from other government departments, universities, industry and communities. Expertise provided by the CNGO includes regional Precambrian bedrock mapping and surficial mapping, thematic research in Paleozoic stratigraphy, mineral-deposit research, GIS and cartography, and computing and data dissemination.

Most of the CNGO’s projects are funded primarily with project-specific funds, which are provided through the office agreement, renewed every five years, between NRCan, INAC and GN-EDT, to manage and operate the office. Additional funding for other research projects is sought from other sources. One of the key funding sources for further research programming for the CNGO has been the Canadian Northern Economic Development Agency’s (CanNor) Strategic Investments in Northern Economic Development (SINED) program, which has been supporting northern economic development since 2004.

Project-specific research focuses on several areas. Geoscience mapping includes bedrock mapping, surficial mapping, geochemical surveys and aeromagnetic surveys. Detailed mineral-deposit studies are aimed at selected targets. Thematic geoscience studies include energy-related research (uranium, petroleum) and geoscience research to protect investments in infrastructure (permafrost, aggregates). Capacity building and data dissemination include communication and outreach efforts, peer-reviewed publications and online dissemination.

This volume contains 14 papers, all of which are available for download, free of charge, at www.cngo.ca. Additionally, the Geoscience Data Series disseminates digital data, such as analytical datasets, point data, and polygon and metadata files, that support the research work and papers in the volume.

The research presented in this volume is divided into the themes—Regional Geoscience (mapping), Geoscience for Infrastructure, Aggregate and Industrial Minerals, Carving Stone, and Outreach and Capacity Building—under which the research was conducted. Results from regional geoscience (mapping) are highlighted in six papers. One paper (Therriault et al.) reports on bedrock and structural mapping research conducted in 2017 as part of the multiyear (2015–2017) Tehery Lake–Wager Bay collaborative project on the northwestern coast of Hudson Bay in southern Nunavut, under NRCan’s Geo-Mapping for Energy and Minerals, Phase 2 (GEM-2; 2013–2020) program. Two papers (Zhang; Tremblay) present initial Paleozoic stratigraphic research and surficial geological studies, respectively, of the Boothia Peninsula in central Nunavut, under the collaborative GEM-2 and SINED programs. The fourth paper (Ielpi et al.) describes stratigraphy, gamma-ray spectrometry and uranium prospectivity conducted in the western Kitikmeot Region. Two papers (Skipton et al.; Bros and Johnston) detail research conducted on the Precambrian bedrock geology of the Pond Inlet–Mary River area, northern Baffin Island, east-central Nunavut under the GEM-2 program. The seventh paper (Gibson et al.) in the regional geology theme, which also falls under the GEM-2 program, examines the ancient sedimentary rocks of northern Baffin and Blylot islands.

The CNGO collaborates with several partners—NRCan (GSC-Ottawa and GSC-Atlantic), universities, ArcticNet and the Government of Nunavut’s Department of Environment—to conduct research under the geoscience for infrastructure theme. One paper (Broom et al.) uses the analysis of marine sediments from Pond Inlet, a fiord in northern Baffin Bay of east-central Nunavut, to demonstrate that underwater slope failures have occurred in the area. The second paper (Campbell et al.) shows that
analysis of marine sediments may enable scientists to predict where submarine landslides will occur in the future. The third paper in this section (Oldenborger et al.) discusses ground temperatures and permafrost conditions in and around the Hamlet of Rankin Inlet, southern Nunavut.

Carving stone is a resource of significance to Inuit communities of Nunavut, supporting a multimillion dollar arts and crafts industry and providing a valuable source of income for carvers. In this section, three papers detail collaborative work between the CNGO, the Qikiqtani Inuit Association, the GN-EDT and the University of Manitoba. Different aspects of selected carving stone quarries and resources are discussed in papers by Timlick et al., Steenkamp et al., and Elgin.

The final paper in the volume (Ham) provides a general overview of the CNGO and its beginnings, and discusses some of the additional collaborative work conducted by the CNGO.

I hope everyone who reads these papers enjoys learning about the variety of high-quality research conducted by this office, and our partners and collaborators.

Acknowledgments

The CNGO staff thanks all authors of papers in this sixth Summary of Activities. Their dedication is greatly appreciated, and is critical in helping the CNGO deliver such a quality product. RnD Technical is also thanked for their technical editing and assembling of the volume. In addition, special thanks are extended to reviewers of papers:

- Vaughn Barrie, Geological Survey of Canada
- Robbie Bennett, Geological Survey of Canada
- Keith Dewing, Geological Survey of Canada
- Ross Elgin, Qikiqtani Inuit Association
- Quentin Gall, Geological consultant and university contract instructor
- Linda Kah, University of Tennessee
- Michel Lamothe, Université du Québec à Montréal
- David Mate, Polar Knowledge Canada
- Daniel Regis, Geological Survey of Canada
- Sharon Smith, Geological Survey of Canada
- Marc St-Onge, Geological Survey of Canada
- Holly Steenkamp, Canada-Nunavut Geoscience Office
- Natasha Wodicka, Geological Survey of Canada

Linda Ham
Chief Geologist
Canada-Nunavut Geoscience Office
www.cngo.ca/
Acknowledgments

The CNGO staff thanks all authors of papers in this sixth Summary of Activities. Their dedication is greatly appreciated, and is critical in helping the CNGO deliver such a quality product. RnD Technical is also thanked for their technical editing and the assembling of the volume. In addition, special thanks are extended to reviewers of papers.

I hope everyone who reads these papers enjoys learning about the variety of high-quality research conducted by this office, and additional collaborative work conducted by the CNGO.

The final paper in the volume (Ham) provides a general overview of the CNGO and its beginnings, and discusses some of the stone quarries and resources are discussed in papers by Timlick et al., Steenkamp et al., and Elgin.

Carving stone is a resource of significance to Inuit communities of Nunavut, supporting a multimillion dollar arts and crafts industry. Oldenborger et al. (2017) discussed ground temperatures and permafrost conditions in and around the Hamlet of Rankin Inlet, southern Nunavut.

The third paper in this section (Oldenborger et al.) discusses ground temperatures and permafrost conditions in and around the Hamlet of Rankin Inlet, southern Nunavut.

Analysis of marine sediments may enable scientists to predict where submarine landslides will occur in the future. The third paper in this section (Oldenborger et al.) discusses ground temperatures and permafrost conditions in and around the Hamlet of Rankin Inlet, southern Nunavut.

Rankin Inlet, southern Nunavut.

ACKNOWLEDGMENTS

The CNGO thanks all authors of papers in this sixth Summary of Activities. Their dedication is greatly appreciated, and is critical in helping the CNGO deliver such a quality product. RnD Technical is also thanked for their technical editing and the assembling of the volume. In addition, special thanks are extended to reviewers of papers.

I hope everyone who reads these papers enjoys learning about the variety of high-quality research conducted by this office, and additional collaborative work conducted by the CNGO.

The final paper in the volume (Ham) provides a general overview of the CNGO and its beginnings, and discusses some of the stone quarries and resources are discussed in papers by Timlick et al., Steenkamp et al., and Elgin.

Carving stone is a resource of significance to Inuit communities of Nunavut, supporting a multimillion dollar arts and crafts industry. Oldenborger et al. (2017) discussed ground temperatures and permafrost conditions in and around the Hamlet of Rankin Inlet, southern Nunavut.

The third paper in this section (Oldenborger et al.) discusses ground temperatures and permafrost conditions in and around the Hamlet of Rankin Inlet, southern Nunavut.

Analysis of marine sediments may enable scientists to predict where submarine landslides will occur in the future. The third paper in this section (Oldenborger et al.) discusses ground temperatures and permafrost conditions in and around the Hamlet of Rankin Inlet, southern Nunavut.

Rankin Inlet, southern Nunavut.
The present volume renfermes 14 articles published (in English only, accompanied by French summaries) on Internet and respectively of the stratigraphic formations and the geology of surface, of Boothia Peninsula in the central part of Nunavut, minerals (GEM-2; 2013 to 2020) of RNCan. Two articles (Zhang; Tremblay) present the result of preliminary studies, in the southern part of Nunavut; this project is part of the second phase of the program of cartography of energy and mineral resources collaborative annual (2015 to 2017) of the region of Lake Tery and bay Wager on the north coast of Hudson Bay, (Therriault et coll.) reports on mapping structural and rock substrate works carried out in 2017 within the framework of the project.

The results related to the geological regional studies (cartography) are the subject of six articles. An article focuses on the development of economic activities of the North (ISDEN) directed by CanNor, which offers its support to initiatives aimed at the development of the mining sector, and the capital investments (permafrost, aggregates). The reinforcement of capacities and the dissemination of knowledge on the development of the mining sector, and the capital investments (permafrost, aggregates). The reinforcement of capacities and the dissemination of knowledge on the development of the mining sector, and the capital investments (permafrost, aggregates). The reinforcement of capacities and the dissemination of knowledge on the development of the mining sector, and the capital investments (permafrost, aggregates). The reinforcement of capacities and the dissemination of knowledge on the development of the mining sector, and the capital investments (permafrost, aggregates). The reinforcement of capacities and the dissemination of knowledge on the development of the mining sector, and the capital investments (permafrost, aggregates). The reinforcement of capacities and the dissemination of knowledge on the development of the mining sector, and the capital investments (permafrost, aggregates).
Préface

C'est pour moi toujours un tel plaisir que de rédiger cette préface qui annonce la parution d'une nouvelle édition des volumes de la série des Sommaires des activités, cette fois le Summary of Activities 2017, que publie chaque année le Bureau géoscientifique Canada-Nunavut (BGCN). L'idée de publier ces volumes est venue à David Matte en 2012, alors qu'il était géologue en chef, et année à laquelle paraissait pour la première fois ce résumé des activités du BGCN. Les articles présentés dans ce volume portent sur la plupart, mais non pas tous, les travaux menés par les chercheurs du BGCN, qu'il s'agisse de travaux de recherche indépendants ou de travaux réalisés dans le cadre de projets de nature collaborative entrepris avec d'autres organismes.

Le BGCN a pour mission d'assurer l'accès aux citoyens du Nord à des renseignements et de l'expertise de nature géoscientifique dans le but d'appuyer les travaux visant la poursuite de l'exploitation et de la mise en valeur responsables des ressources; le développement responsable de l'infrastructure; le renforcement des capacités géoscientifiques; l'éducation et les possibilités de formation dans le domaine des sciences de la Terre; et la mise en place de programmes de sensibilisation du public en matière de géosciences. Pour ce faire, les chercheurs du BGCN dressent des cartes, interprètent et consignent leurs observations au sujet des caractéristiques géologiques et les ressources du Nunavut, souvent en collaboration avec d'autres chercheurs du domaine géoscientifique, et sensibilisent le public à des questions importantes relatives aux sciences de la Terre.

Le BGCN compte présentement six employés professionnels qui voient à la mise en œuvre et à la poursuite d'une vaste gamme de travaux de recherche dans le domaine géoscientifique entrepris en collaboration avec des partenaires provenant d'autres ministères gouvernementaux, d'universités, du secteur industriel et des collectivités comme telles. Le BGCN partage ses connaissances en matière de cartographie du substrat rocheux du Précambrien et des formations de surface; de recherches thématiques dans le domaine de la stratigraphie paléozoïque; de recherches liées aux gisements minéraux; des systèmes d'information géographique et de cartographie; et de diffusion des données.

Le financement pour la plupart des projets entrepris par le BGCN provient de fonds alloués spécifiquement à ces fins en vertu d'une entente, renouvelée tous les cinq ans, intervenue entre RNCan, AANC et le DET du Gouvernement du Nunavut (aux termes de laquelle ils s'entendent de gérer et de diriger le Bureau); du financement d'appui provient également d'autres sources. Une des sources de financement principales du BGCN lui provient par le biais du programme Investissements stratégiques dans le développement économique du Nord (ISDEN) dirigé par CanNor, qui offre son soutien aux initiatives visant le développement économique du Nord depuis 2004.

Le présent volume renferme 14 articles publiés (en anglais seulement, accompagnés de résumés en français) sur Internet et téléchargeables sans frais depuis le www.cngo.ca. En outre, la Série des données géoscientifiques permet la diffusion de données numériques, tels les ensembles de données analytiques, ponctuelles ou polygonales et les fichiers de métadonnées, appuyant les travaux de recherche présentés dans le volume.

Les travaux de recherche présentés dans ce volume sont répartis en fonction des sujets suivants qui correspondent aux travaux menés par le Bureau, à savoir les Études géoscientifiques régionales (cartographie), les Études géoscientifiques liées à l'infrastructure, les Agrégats et minéraux industriels, la Pierre à sculpter et la Sensibilisation du public et le renforcement des capacités. Les résultats associés aux études géoscientifiques régionales (cartographie) font l'objet de six articles. Un article (Therriault et coll.) fait état de travaux de cartographie structurelle et du substrat rocheux menés en 2017 dans le cadre du projet collaboratif pluriannuel (2015 à 2017) de la région du lac Téhéry et de la baie Wager sur la côte nordouest de la baie d'Hudson, dans la partie sud du Nunavut; ce projet fait partie de la deuxième phase du programme de géocartographie de l'énergie et des minéraux (GEM-2; 2013 à 2020) de RNCan. Deux articles (Zhang; Tremblay) présentent le résultat d'études préliminaires, respectivement de la stratigraphie paléozoïque et de la géologie de surface, de la presqu'île de Boothia au centre du Nunavut, respectivement de la stratigraphie paléozoïque et de la géologie de surface, de la presqu'île de Boothia au centre du Nunavut, respectivement de la stratigraphie paléozoïque et de la géologie de surface, de la presqu'île de Boothia au centre du Nunavut, respectivement de la stratigraphie paléozoïque et de la géologie de surface, de la presqu'île de Boothia au centre du Nunavut, respectivement de la stratigraphie paléozoïque et de la géologie de surface, de la presqu'île de Boothia au centre du Nunavut, respectivement de la stratigraphie paléozoïque et de la géologie de surface, de la presqu'île de Boothia au centre du Nunavut, respectivement de la stratigraphie paléozoïque et de la géologie de surface, de la presqu'île de Boothia au centre du Nunavut, respectivement de la stratigraphie paléozoïque et de la géologie de surface, de la presqu'île de Boothia au centre du Nunavut, respectivement de la stratigraphie paléozoïque et de la géologie de surface, de la presqu'île de Boothia au centre du Nunavut, respectivement de la stratigraphie paléozoïque et de la géologie de surface, de la presqu'île de Boothia au centre du Nunavut, respectivement de la stratigraphie paléozoïque et de la géologie de surface, de la presqu'île de Boothia au centre du Nunavut, respectivement de la stratigraphie paléozoïque et de la géologie de surface, de la presqu'île de Boothia au centre du Nunavut, respectivement de la stratigraphie paléozoïque et de la géologie de surface, de la presqu'île de Boothia au centre du Nunavut, respectivement de la stratigraphie paléozoïque et de la géologie de surface, de la presqu'île de Boothia au centre du Nunavut, respectivement de la stratigraphie paléozoïque et de la géologie de surface, de la presqu'île de Boothia au centre du Nunavut, respectivement de la stratigraphie paléozoïque et de la géologie de surface, de la presqu'île de Boothia au centre du Nunavut, respectivement de la stratigraphie paléozoïque et de la géologie de surface, de la presqu'île de Boothia au centre du Nunavut, respectivement de la stratigraphie paléozoïque et de la géologie de surface, de la presqu'île de Boothia au centre du Nunavut, respectivement de la stratigraphie paléozoïque et de la géologie de surface, de la presqu'île de Boothia au centre du Nunavut, respectivement de la stratigraphie paléozoïque et de la géologie de surface, de la presqu'île de Boothia au centre du Nunavut, respectivement de la stratigraphie paléozoïque et de la géologie de surface, de la presqu'île de Boothia au centre du Nunavut.
entreprises dans le cadre de programmes collaboratifs impliquant GEM-2 et ISDEN. Les auteurs du quatrième article (Ielpi et coll.) décrivent les travaux de stratigraphie, de spectrométrie gamma et de la prospectivité en uranium menés dans l'ouest de la région de Kitikmeot. Deux articles (Skipton et coll.; Bros et Johnston) font état de recherches portant sur la géologie du socle rocheux précambrien de la région de Pond Inlet et Mary River, au nord de l'île de Baffin, au centre-est du Nunavut, réalisées dans le cadre du programme GEM-2. Le septième article (Gibson et al.) associé au thème de la géologie régionale s'inscrit également dans le cadre du programme GEM-2 et porte sur les roches sédimentaires anciennes du nord de l'île de Baffin et de l'île Bylot.

Le BGCN collabore avec plusieurs partenaires, à savoir RNCan (CGC-Ottawa et CGC-Atlantique), des universités, ArcticNet et le ministère de l’Environnement du Gouvernement du Nunavut, afin de réaliser des travaux de recherche dans le domaine des études géoscientifiques liées à l'infrastructure. Un article (Broom et coll.) rapporte comment l'analyse de sédiments marins provenant du bras Pond, un fjord dans la partie nord de la baie de Baffin dans le centre-est du Nunavut, permet de démontrer que des ruptures de versant se sont produites dans la région. Les auteurs d'un deuxième article (Campbell et coll.) démontrent que l'analyse de sédiments marins pourrait permettre aux scientifiques de prédire les endroits les plus susceptibles d'être sujets à des glissements sous-marins à l'avenir. Le troisième article de cette section (Oldenborger et coll.) fait état des températures du sol et des conditions liées au pergélisol au hameau de Rankin Inlet et la région environnante, au sud du Nunavut.

La pierre à sculpter est une ressource importante pour les collectivités inuits du Nunavut et soutient une industrie de métiers d'art de plusieurs millions de dollars qui procure une source précieuse de revenu aux sculpteurs. Dans la présente section, trois articles rapportent en détail le travail collaboratif qui lie le BGCN, la Qikiqtani Inuit Association, le DET du Gouvernement du Nunavut et l'Université du Manitoba. Différents aspects propres à des carrières et des gisements de pierre à sculpter choisis font l'objet des articles rédigés par Timlick et coll., Steenkamp et coll. et Elgin.

Le dernier article du volume (Ham) présente un aperçu général des débuts du BGCN et fait état de quelque uns des autres travaux de nature collaborative menés par le BGCN.

J'ose espérer que tous et chacun découvriront et apprécieront en lisant ces articles à quel point est variée la recherche de haute qualité entreprise aussi bien par le Bureau, que par ses partenaires et collaborateurs.

Remerciements

Le Bureau géoscientifique Canada-Nunavut tient à remercier les auteurs des articles publiés dans cette sixième édition du Sommaire des activités. Leur dévouement est extrêmement apprécié et c'est grâce à eux qu'il nous est possible de publier un document d'une telle qualité. Merci à RnD Technical d'avoir vu à l'édition technique et à l'assemblage de ce numéro. Nos remerciements s'adressent également aux personnes suivantes, lecteurs critiques des articles :

Vaughn Barrie
Commission géologique du Canada

Robbie Bennett
Commission géologique du Canada

Keith Dewing
Commission géologique du Canada

Ross Elgin
Qikiqtani Inuit Association

Quentin Gall
Consultant en questions géologiques et chargé de cours d'université à contrat

Linda Kah
University of Tennessee

Michel Lamothe
Université du Québec à Montréal

David Mate
Savoir polaire Canada

Daniel Regis
Commission géologique du Canada

Sharon Smith
Commission géologique du Canada

Marc St-Onge
Commission géologique du Canada

Holly Steenkamp
Bureau géoscientifique Canada-Nunavut

Natasha Wodicka
Commission géologique du Canada

Linda Ham
Géologue en chef
Bureau géoscientifique Canada-Nunavut

www.cngo.ca/
Entreprises dans le cadre de programmes collaboratifs impliquant GEM-2 et ISDEN. Les auteurs du quatrième article (Ielpi et coll.) décrivent les travaux de stratigraphie, de spectrométrie gamma et de la prospectivité en uranium menés dans l’ouest de la région de Kitikmeot. Deux articles (Skipton et coll.; Bros et Johnston) font état de recherches portant sur la géologie du socle rocheux précambrien de la région de Pond Inlet et Mary River, au nord de l’île de Baffin, au centre-est du Nunavut, réalisées dans le cadre du programme GEM-2. Le septième article (Gibson et al.) associé au thème de la géologie régionale s’inscrit également dans le cadre du programme GEM-2 et porte sur les roches sédimentaires anciennes du nord de l’île de Baffin et de l’île Bylot.

Le BGCN collabore avec plusieurs partenaires, à savoir RNCan (CGC-Ottawa et CGC-Atlantique), des universités, ArcticNet et le ministère de l’Environnement du Gouvernement du Nunavut, afin de réaliser des travaux de recherche dans le domaine des études géoscientifiques liées à l’infrastructure. Un article (Broom et coll.) rapporte comment l’analyse de sédiments marins provenant du bras Pond, un fjord dans la partie nord de la baie de Baffin dans le centre-est du Nunavut, permet de démontrer que des ruptures de versant se sont produites dans la région. Les auteurs d’un deuxième article (Camp- bell et coll.) démontrent que l’analyse de sédiments marins pourrait permettre aux scientifiques de prédire les endroits les plus susceptibles d’être sujets à des glissements sous-marins à l’avenir. Le troisième article de cette section (Oldenborger et coll.) fait état des températures du sol et des conditions liées au pergélisol au hameau de Rankin Inlet et la région environnante, au sud du Nunavut.

La pierre à sculpter est une ressource importante pour les collectivités inuits du Nunavut et soutient une industrie de métiers d’art de plusieurs millions de dollars qui procure une source précieuse de revenu aux sculpteurs. Dans la présente section, trois articles rapportent en détail le travail collaboratif qui lie le BGCN, la Qikiqtani Inuit Association, le DET du Gouvernement du Nunavut et l’Université du Manitoba. Différents aspects propres à des carrières et des gisements de pierre à sculpter choisis font l’objet des articles rédigés par Timlick et coll., Steenkamp et coll. et Elgin.

Le dernier article du volume (Ham) présente un aperçu général des débuts du BGCN et fait état de quelque uns des autres travaux de nature collaborative menés par le BGCN.

J’ose espérer que tous et chacun découvriront et apprécieront en lisant ces articles à quel point est variée la recherche de haute qualité entreprise aussi bien par le Bureau, que par ses partenaires et collaborateurs.

Remerciements

Le Bureau géoscientifique Canada-Nunavut tient à remercier les auteurs des articles publiés dans cette sixième édition du Sommaire des activités. Leur dévouement est extrêmement apprécié et c’est grâce à eux qu’il nous est possible de publier un document d’une telle qualité. Merci à RnD Technical d’avoir vu à l’édition technique et à l’assemblage de ce numéro. Nos remerciements s’adressent également aux personnes suivantes, lecteurs critiques des articles:

Vaughn Barrie Commission géologique du Canada
Robbie Bennett Commission géologique du Canada
Keith Dewing Commission géologique du Canada
Ross Elgin Qikiqtani Inuit Association
Quentin Gall Consultant en questions géologiques et chargé de cours d’université à contrat
Linda Kah University of Tennessee
Michel Lamothe Université du Québec à Montréal
David Mate Savoir polaire Canada
Daniel Regis Commission géologique du Canada
Sharon Smith Commission géologique du Canada
Marc St-Onge Commission géologique du Canada
Holly Steenkamp Bureau géoscientifique Canada-Nunavut
Natasha Wodicka Commission géologique du Canada
Linda Ham
Géologue en chef
Bureau géoscientifique Canada-Nunavut
www.cngo.ca/
Canada-Nunavut Geoscience Office
SUMMARY OF ACTIVITIES 2017

Regional geoscience
1. Wager shear zone
2. Boothia Peninsula
3. Bear Creek Hills
4. North Baffin
5. Thule Bay Sound

Geoscience for infrastructure
1. Pond Inlet marine
2. Baffin Bay marine
3. Western Hudson Bay

Carving stone
1. Korok-Belcher
2. Koonark
3. Qikiqtaruk

Outreach and capacity building
Canada-Nunavut Geoscience Office

Nunavut administrative region
Contents

Regional geoscience

New mapping and initial structural characterization of the Wager shear zone, northwestern Hudson Bay, Nunavut
I. Therriault, H.M. Steenkamp and K.P. Larson

1

Report of field activities for Ordovician stratigraphy, Boothia Peninsula, Nunavut – part of the GEM-2
Integrated Geoscience of the Northwest Passage:
Boothia Peninsula–Somerset Island Activity
S. Zhang

1

Advances in the surficial geology study of Boothia Peninsula, central Nunavut
T. Tremblay

1

Stratigraphy, gamma-ray spectrometry and uranium prospectivity of the Kilohigok paleosol, Bear Creek Hills, western Nunavut
A. Ielpi, S. Michel, J.W. Greenman and L.E. Lebeau

2

Precambrian bedrock geology of the Pond Inlet–Mary River area, northern Baffin Island, Nunavut

2

Field observations of the Mary River Group south of Tay Sound, northern Baffin Island, Nunavut: stratigraphy and structure of supracrustal sequences and surrounding plutonic units
E.R. Bros, and S.T. Johnston

3

Composite stratigraphic section of exceptionally exposed middle Bylot Supergroup carbonate rocks along Tremblay Sound, northwestern Baffin Island, Nunavut

3

Geoscience for infrastructure

Investigation of a Holocene marine sedimentary record from Pond Inlet, northern Baffin Island, Nunavut
L.M. Broom, D.C. Campbell and J.C. Gosse

4

Integration of lithological and geotechnical properties of marine sediments in Baffin Bay, Nunavut
D.C. Campbell, K. MacKillop, K.A. Jenner, D. Ouellette, M. MacQuarrie and D. Bergeron

4

Ground temperatures and permafrost conditions, Rankin Inlet, southern Nunavut
G.A. Oldenborger, O. Bellehumeur-Génier, N. Short, T. Tremblay and A.-M. LeBlanc

4

Carving stone

Comparative study of the petrogenesis of excellent-quality carving stone from Korok Inlet, southern Baffin Island, and the Belcher Islands, Nunavut
L. Timlick, H.M. Steenkamp and A. Camacho

5

Geological mapping and resource evaluation of the Koonark carving stone deposit, northern Baffin Island, Nunavut
H.M. Steenkamp, R.A. Elgin and I. Therriault

5

Status and implications of reserves at carving stone quarries within the Qikiqtaaluk Region of Nunavut
R.A. Elgin

6

Outreach and capacity building

Canada-Nunavut Geoscience Office: looking back and looking forward
L.J. Ham

6
Ordovician - Holocene
Études géoscientifiques régionales
1) Études géoscientifiques liées à l'infrastructure
 1) Passage Pond
 2) Baie de Baffin
 3) Ouest de la baie d'Hudson

2) Pierre à sculpter
 1) Korok-Belcher
 2) Koonark
 3) Qikiqtaruk

Sensibilisation et renforcement des capacités
1) Bureau géoscientifique Canada-Nunavut

Région administrative du Nunavut
Table des matières

Études géoscientifiques régionales

Nouveaux travaux de cartographie et interprétation des caractéristiques structurales de la zone de cisaillement de Wager Bay, au nord-ouest de la baie d’Hudson, au Nunavut
I. Therriault, H.M. Steenkamp et K.P. Larson 15

Rapport de travaux sur le terrain portant sur la stratigraphie ordovicienne de la presqu’île de Boothia, au Nunavut : contribution à l’activité géoscientifique relative à la région de la presqu’île de Boothia et de l’île Somerset entreprise dans le cadre du projet GEM-2
S. Zhang ... 15

Progrès réalisés dans le cadre de l’étude de la géologie de surface de la presqu’île de Boothia, dans la partie centrale du Nunavut
T. Tremblay ... 16

Stratigraphie, spectrométrie gamma et étude prospective de la teneur en uranium du paléosol de Kilohigok, dans les collines Bear Creek, dans la partie ouest du Nunavut
A. Ielpi, S. Michel, J.W. Greenman et L.E. Lebeau 16

Géologie du substrat rocheux précambrien de la région de Pond Inlet et de Mary River, dans la partie nord de l’île de Baffin, au Nunavut

Observations de terrain du Groupe de Mary River, au sud de la baie Tay, dans la partie nord de l'île de Baffin, au Nunavut : stratigraphie et structure des séquences supracrustales et des unités plutoniques adjacentes
E.R. Bros et S.T. Johnston .. 17

Coupe stratigraphique composée de roches carbonatées de la partie intermédiaire du Supergroupe de Bylot exceptionnellement bien exposées le long du détroit de Tremblay, dans la partie nord-ouest de l’île de Baffin, au Nunavut

Études géoscientifiques liées à l’infrastructure

Analyse d’un profil sédimentaire marin de l’Holocène du passage Pond, dans la partie nord de l’île de Baffin, au Nunavut
L.M. Broom, D.C. Campbell et J.C. Gosse 18

Intégration des propriétés lithologiques et géotechniques de sédiments marins de la baie de Baffin, au Nunavut

Températures du sol et conditions propres au pergélisol dans la région de Rankin Inlet, dans la partie sud du Nunavut
G.A. Oldenborger, O. Bellehumeur-Génier, N. Short, T. Tremblay et A.-M. LeBlanc 19

Pierre à sculpter

Étude comparative de la pétrogenèse de la pierre à sculpter d'excellente qualité provenant de la carrière de Korok Inlet, dans la partie sud de l’île de Baffin, et des îles Belcher, au Nunavut
L. Timlick, H.M. Steenkamp et A. Camacho 20

Cartographie géologique et évaluation des ressources du gisement de pierre à sculpter de Koonark, dans la partie nord de l’île de Baffin, au Nunavut
H.M. Steenkamp, R.A. Elgin et I. Therriault 20

État des réserves en pierre à sculpter des carrières de la région de Qikiqtaaluk, au Nunavut, et répercussions possibles
R.A Elgin 21

Sensibilisation et renforcement des capacités

Le Bureau géoscientifique Canada-Nunavut : regard sur le passé et perspectives d’avenir
L.J. Ham 21
New mapping and initial structural characterization of the Wager shear zone, northwestern Hudson Bay, Nunavut
I. Therriault, H.M. Steenkamp and K.P. Larson

Bedrock mapping was conducted in June and July 2017 near Wager Bay, on the northwestern coast of Hudson Bay, Nunavut. This work was led by the Canada-Nunavut Geoscience Office (CNGO) but is part of the Geological Survey of Canada’s (through the Geo-mapping for Energy and Minerals program, Rae activity) and CNGO’s joint Tehery-Wager Geoscience Project. Fieldwork focused on the Wager shear zone, which extends ~450 km from Southampton Island, through Wager Bay and farther inland to the west. Shear zones are structures that form along the margins of large blocks of Earth’s crust where the blocks have moved in different relative directions. The resulting characteristics of deformed rocks in a shear zone depend on what the crust is made of, and the temperature and pressure conditions that were reached during the movement event. One goal of this summer’s work was to find the boundaries of the Wager shear zone by looking for strongly deformed rocks. Another goal was to look at how the deformed rocks change toward the core of the shear zone. Rock samples were collected to confirm their mineral components, look for microscopic evidence of deformation and determine how old the rocks are. The field and analytical data will help answer important questions about the timing, duration and direction of movements recorded by the Wager shear zone. The results will be integrated with structural and age data for neighbouring rocks to better understand the geological history of the northwestern Hudson Bay region.

Report of field activities for Ordovician stratigraphy, Boothia Peninsula, Nunavut – part of the GEM-2 Integrated Geoscience of the Northwest Passage: Boothia Peninsula–Somerset Island Activity
S. Zhang

An evaluation of the Ordovician strata on Boothia Peninsula is one of the three components of the GEM-2 Boothia-Somerset Integrated Geoscience Project. This report summarizes previous work on the Paleozoic stratigraphy and sections on Boothia Peninsula, and fieldwork carried out on Ordovician sections on the peninsula during the 2017 field season. The work will provide essential data for a more detailed stratigraphic division of the rocks, establishing the ages of the different rock units, and making correlations with similar strata on other Arctic islands.

Advances in the surficial geology study of Boothia Peninsula, central Nunavut
T. Tremblay

The Integrated Geoscience of the Northwest Passage: Boothia Peninsula–Somerset Island activity of the Geo-mapping for Energy and Minerals program, Phase 2 (2013–2020) is a collaborative project between the Canada-Nunavut Geoscience Office and the Geological Survey of Canada. In summer 2017, fieldwork was conducted on Boothia Peninsula, north of the hamlet of Taloyoak, Nunavut. The results of the surficial geology study will assist the search for and future development of natural resources, and provide valuable data for infrastructure and environmental studies. Samples of glacial sediments (till) were collected and submitted for geochemical and heavy mineral analyses; the results are expected in early 2018. The analyses will provide baseline information on the metal (mineral) potential in this large, underexplored area. Field observations of surficial sediments and geomorphological processes were also documented. An ice-flow history was synthesized from this fieldwork and remote sensing image interpretation. Understanding ice-flow direction and geomorphological processes are critical to interpreting the geochemical analyses of and mineralogical data from surficial sediments.

New mapping and initial structural characterization of the Wager shear zone, northwestern Hudson Bay, Nunavut

I. Therriault, H.M. Steenkamp and K.P. Larson

Bedrock mapping was conducted in June and July 2017 near Wager Bay, on the northwestern coast of Hudson Bay, Nunavut. This work was led by the Canada-Nunavut Geoscience Office (CNGO) but is part of the Geological Survey of Canada's (through the Geo-mapping for Energy and Minerals program, Rae activity) and CNGO's joint Tehery-Wager Geoscience Project. Fieldwork focused on the Wager shear zone, which extends ~450 km from Southampton Island, through Wager Bay and farther inland to the west. Shear zones are structures that form along the margins of large blocks of Earth's crust where the blocks have moved in different relative directions. The resulting characteristics of deformed rocks in a shear zone depend on what the crust is made of, and the temperature and pressure conditions that were reached during the movement event. One goal of this summer's work was to find the boundaries of the Wager shear zone by looking for strongly deformed rocks. Another goal was to look at how the deformed rocks change toward the core of the shear zone. Rock samples were collected to confirm their mineral components, look for microscopic evidence of deformation and determine how old the rocks are. The field and analytical data will help answer important questions about the timing, duration and direction of movements recorded by the Wager shear zone. The results will be integrated with structural and age data for neighbouring rocks to better understand the geological history of the northwestern Hudson Bay region.

Report of field activities for Ordovician stratigraphy, Boothia Peninsula, Nunavut – part of the GEM-2 Integrated Geoscience of the Northwest Passage: Boothia Peninsula–Somerset Island Activity

S. Zhang

An evaluation of the Ordovician strata on Boothia Peninsula is one of the three components of the GEM-2 Boothia-Somerset Integrated Geoscience Project. This report summarizes previous work on the Paleozoic stratigraphy and sections on Boothia Peninsula, and fieldwork carried out on Ordovician sections on the peninsula during the 2017 field season. The work will provide essential data for a more detailed stratigraphic division of the rocks, establishing the ages of the different rock units, and making correlations with similar strata on other Arctic islands.

Advances in the surficial geology study of Boothia Peninsula, central Nunavut

T. Tremblay

The Integrated Geoscience of the Northwest Passage: Boothia Peninsula–Somerset Island activity of the Geo-mapping for Energy and Minerals program, Phase 2 (2013–2020) is a collaborative project between the Canada-Nunavut Geoscience Office and the Geological Survey of Canada. In summer 2017, fieldwork was conducted on Boothia Peninsula, north of the hamlet of Taloyoak, Nunavut. The results of the surficial geology study will assist the search for and future development of natural resources, and provide valuable data for infrastructure and environmental studies. Samples of glacial sediments (till) were collected and submitted for geochemical and heavy mineral analyses; the results are expected in early 2018. The analyses will provide baseline information on the metal (mineral) potential in this large, underexplored area. Field observations of surficial sediments and geomorphological processes were also documented. An ice-flow history was synthesized from this fieldwork and remote sensing image interpretation. Understanding ice-flow direction and geomorphological processes are critical to interpreting the geochemical analyses of and mineralogical data from surficial sediments.

Stratigraphy, gamma-ray spectrometry and uranium prospectivity of the Kilohigok paleosol, Bear Creek Hills, western Nunavut

A. Ielpi, S. Michel, J.W. Greenman and L.E. Lebeau

The Kitikmeot Region of Nunavut contains several areas where sedimentary rocks have potential for economic commodities such as uranium, lead and zinc. Many parts of the region were geologically mapped during the 1960s to 1980s, and more focussed, local geological investigations are now warranted. This study, part of the Kilohigok Basin Geoscience Project, focussed on one such area in the Bear Creek Hills, located east of Kiluhiqtuq (Bathurst Inlet) and roughly 300 km southwest of Iqaluit (Cambridge Bay). Geological investigations in July 2017 recognized a succession of sedimentary rocks originally deposited in river and ocean settings approximately 2 billion years ago. These sedimentary rocks, called the Kimerot Group, overlie older metamorphic rocks belonging to the Yellowknife Supergroup, which is approximately 2.7 billion years old.

Fieldwork was focussed in areas where the contact between sedimentary and metamorphic rocks is exposed. Along this contact, radioactivity analyses were carried out with a hand-held instrument (a gamma-ray spectrometer) in a search for notable concentrations of minerals. Promising results indicate concentrations of up to 121.1 parts per million of uranium (which is 0.012%), indicating that the area could have potential for uranium mineralization. Areas farther from the contact between the sedimentary and metamorphic rocks did not yield significant concentrations of uranium.

Precambrian bedrock geology of the Pond Inlet–Mary River area, northern Baffin Island, Nunavut

This article presents the results and initial interpretations from six weeks of geological mapping conducted in the Pond Inlet–Mary River area of northern Baffin Island during July–August 2017. With the goal of improving the level of geoscience knowledge for northern Baffin Island, this work forms part of the bedrock mapping activity of the Geo-Mapping for Energy and Minerals (GEM-2) Baffin project led by the Geological Survey of Canada. The study area is mainly comprised of approximately 2.9–2.7 billion years old granite-type rocks and approximately 2.7 billion years old volcanic and sedimentary rocks of the Mary River Group. This group of rocks hosts iron-ore deposits, including the high-grade, large- tonnage Mary River deposit. The study area also contains younger (approximately 1.27–1.24 billion years old) sedimentary rocks that mostly consist of sandstone, shale and limestone, known as the Ybylot Supergroup. The new mapping presented here provides an improved understanding of the geology of northern Baffin Island, with implications for economic-mineral potential, and the ancient assembly of tectonic plates in the eastern Canadian Arctic.

Field observations of the Mary River Group south of Tay Sound, northern Baffin Island, Nunavut: stratigraphy and structure of supracrustal sequences and surrounding plutonic units

E.R. Bros and S.T. Johnston

The Mary River Group is composed of a package of rocks roughly 2.7 billion year-old exposed on northern Baffin Island. They consist of metamorphosed volcanic and sedimentary rocks, banded iron formation and iron ore. The high-grade iron ore is currently being mined by Baffinland Iron Mines Corporation at the Mary River Mine. Although these deposits have been heavily explored, the unmineralized rocks are less studied. The study area is located along a long lake in the southwestern corner of the Tuktularvik area, approximately 100 km south of the hamlet of Pond Inlet. There has been previous work done in the area on a preliminary scale by the Canada-Nunavut Geoscience Office and also by Baffinland, as it also contains banded iron formation. This study focuses on the fieldwork completed in July and August of 2017, as part of the Geological Survey of Canada's two-year North Baffin project.

The fieldwork was aimed at mapping the exposed bedrock around the long lake in the Tuktularvik area, to determine the types of rock found that area and their orientation. The study describes what was found, outlining the different rock types as well as their structural characteristics. Ongoing analytical work on these rocks will lead to a better understanding of the metamorphic and structural history of the area. The aim is to provide a baseline of geological knowledge for the Mary River Group on northern Baffin Island.

Composite stratigraphic section of exceptionally exposed middle Bylot Supergroup carbonate rocks along Tremblay Sound, northwestern Baffin Island, Nunavut

Northern Baffin and Bylot islands in Nunavut host remarkably well-preserved sedimentary rocks that are over one billion years old and that are now primarily exposed as cliffs rising from the Arctic Ocean. These ancient sediments, known as the Bylot Supergroup, were deposited in a depression within the crust of the supercontinent Rodinia during important transitions in Earth's tectonic regime, geochemical cycles and biosphere. These rocks contain fossils of some of the earliest multicellular algae and provide evidence for changes in the chemical composition of the ocean and atmosphere. This study focuses on the extraordinarily well-exposed and continuous outcrops north of the hamlet of Pond Inlet along Tremblay Sound. A nearly-continuous succession approximately 1700 m thick of mostly carbonate rocks was measured and described. Samples were collected for a series of geochemical and paleontological studies to gain a better understanding of the geological history of this region and to learn more about this fascinating period of Earth history.

Investigation of a Holocene marine sedimentary record from Pond Inlet, northern Baffin Island, Nunavut

L.M. Broom, D.C. Campbell and J.C. Gosse

Analysis of the marine sediments from Pond Inlet, Nunavut, a fiord in northern Baffin Bay, reveals that underwater landslides have occurred in the area. The region is located in an active earthquake zone where earthquakes with a magnitude of >7 have occurred over the last century. These large earthquakes could trigger slope failures in the surrounding area, potentially triggering large ocean waves that could damage infrastructure and endanger coastal communities. The purpose of this project is to map the extents of these landslide deposits to determine their size and also to establish when they were deposited to determine approximately how often they have occurred. Initial results indicate that at least one slope failure event has occurred every 800 years in this area over the last 3000 years and work is ongoing to expand this record. The hamlet of Pond Inlet (population 1617) is located just south of the study area and understanding how frequently underwater slope failures occur in this region will be important to improving assessments of risk to coastal communities.

Integration of lithological and geotechnical properties of marine sediments in Baffin Bay, Nunavut

D.C. Campbell, K. MacKillop, K.A. Jenner, D. Ouellette, M. MacQuarrie and D. Bergeron

Baffin Island has a coastal population and the area has competing demands for seabed usage ranging from traditional uses such as fishing, to marine protected areas, natural seabed architecture and potential natural resources. Baffin Bay has complicated geology, greatly impacted by past glaciers and frequent earthquakes. Since 2012, a research project has been underway by the Geological Survey of Canada to study marine geological hazards in the region. The approach integrates seabed shape, shallow subsurface geology and engineering properties (strength and stability) of the seabed to determine the extent of hazards, their recurrence, trigger mechanisms and likelihood of future failure events. Sediment cores taken from 'normal' sections of seabed along the shallow edge of Baffin Bay reveal a consistent pattern that spans the last 40 thousand years of depositional history. The sediments were deposited during and after the last glaciers in the area. Results from the engineering properties of the seabed reveal normal to underconsolidated sediments. A potentially unstable unit is associated with brown mud deposited near the end of the last ice age, about 14 thousand years ago. These results may allow predictions of where submarine landslides will occur in the future.

Ground temperatures and permafrost conditions, Rankin Inlet, southern Nunavut

G.A. Oldenborger, O. Bellehumeur-Génier, N. Short, T. Tremblay and A.-M. LeBlanc

Along the western coast of Hudson Bay in the Kivalliq Region of Nunavut, permafrost and ground ice are important features of the landscape and can significantly affect land-based infrastructure. Fieldwork was conducted in Rankin Inlet to provide information on ground temperatures, ground ice conditions and thaw settlement for the region. Recent fieldwork involved installation of several ground temperature monitoring stations, along with collection of a variety of geoscience data using ground-based, airborne and satellite measurements. Although based on preliminary data from a limited recording period, measured ground temperatures for the summer of 2017 indicate warmer conditions than historically reported. Other observations provide information on different terrain types that may be susceptible to permafrost degradation, and how geophysical, airborne and satellite surveys might be used to map these areas.

Comparative study of the petrogenesis of excellent-quality carving stone from Korok Inlet, southern Baffin Island, and the Belcher Islands, Nunavut

L. Timlick, H.M. Steenkamp and A. Camacho

Carving stone is economically and culturally valuable to northern communities. Quarries in Nunavut are few, and the need to find new deposits and expand known sites has increased alongside demand for carving stone. Carving stone samples from two quarries in the Qikiqtaaluk Region of Nunavut were examined for their mineral and chemical characteristics that could increase the understanding of how these deposits form.

Carving stone at Qullisajaniavvik (the community quarry) in the Belcher Islands formed when a body of magma under the Earth's surface pushed through the Costello Formation. The heat and fluids reacted with the carbonate rocks in the Costello Formation to create a dolomitic tectonic carbonate, which is made up of the minerals dolomite, calcite, tectal, chlorite and sometimes quartz, and is easily carved. Carving stone from Kangiqsukutaq (Korok Inlet), located near Cape Dorset on southern Baffin Island, is a serpentinite rock and contains the minerals lizardite, magnetite, and sometimes brucite, hydrotalcite and calcite. The Korok Inlet carving stone likely formed from the interaction of hot fluids that were rich in dissolved minerals with either the Lake Harbour Group marble or calc-silicate. It is important to note that carving stone samples examined from these locations do not contain asbestos-like minerals. The Qullisajaniavvik (Belcher Islands) and Kangiqsukutaq (Korok Inlet) carving stone deposits both contain excellent-quality carving stone, according to Inuit carvers, and yet are the products of very different geological histories.

Geological mapping and resource evaluation of the Koonark carving stone deposit, northern Baffin Island, Nunavut

H.M. Steenkamp, R.A. Elgin and I. Therriault

The Canada-Nunavut Geoscience Office and Qikiqtani Inuit Association mapped the geology of the Koonark carving stone deposit on northern Baffin Island to assess the volume and characteristics of the raw carving stone. The mapped area includes Mary River Group sedimentary and volcanic rocks that are roughly 2.8–2.7 billion years old and are situated along the Central Borden Fault, which places them next to 541–443 million year old sedimentary rocks.

Four areas were recognized to have large volumes of potential carving stone: the ‘Koonark mountain’, ‘Valley Side’, ‘Upper Koonark’ and ‘Scree Slope’ sites. The stone from each site has a unique texture, mineral content and polished appearance. In total, 80 240 tonnes of surface-accessible carving stone are present at these four sites, and more carving stone may also be found beneath the topsoil in the area. Based on the mapping and geological history of the area, it is thought that the carving stone formed when hot, mineral-rich fluids percolated through and altered some of the Mary River Group volcanic rocks, possibly around the same time as the development of the Central Borden Fault.

Major advantages for possible development of a carving stone quarry at the Koonark deposit are the existing road and port facility of the nearby Mary River mine. However, there would also be challenges, such as steep topography and seasonal accessibility at the site. Exploration for similar carving stone deposits in this area should focus on where Mary River Group volcanic rocks, large faults and younger sedimentary rocks are found together.

Status and implications of reserves at carving stone quarries within the Qikiqtaaluk Region of Nunavut

R.A Elgin

Intensive hand mining for carving stone since the 1960s has led to the development of several major, community-run quarries across the Qikiqtaaluk Region of Nunavut. Special provisions within the Nunavut Agreement have permitted an almost unrestricted access to carving stone, which continues to represent a special cultural resource and economic lifeline for many Inuit artisans. Unfortunately, several sites are currently struggling to meet demand due to their high walls and the volume of debris produced by historical activities. Given the importance of these sites to the future development of the carving stone industry, the Qikiqtani Inuit Association created a quarry evaluation project as a means to address safety concerns and determine the possibility of development at several of the major, community-run carving stone quarries.

Quarries were therefore visited in 2016 and 2017, in partnership with the Canada-Nunavut Geoscience Office, the Government of Nunavut and the University of Manitoba, to carry out geological and topological mapping and geochemical sampling, in order to better understand the size, formation and distribution of excellent-quality carving stone deposits. This paper focuses on the results of the topological survey and presents the estimated reserves remaining at each major site around the southern Baffin communities. This information can be used to determine the remaining lifespan of the quarries and whether sufficient stone is present to distribute to neighbouring communities.

Canada-Nunavut Geoscience Office: Looking back and looking forward

L.J. Ham

The Canada-Nunavut Geoscience Office (CNGO) was established in September 1999 following the creation of Nunavut. The CNGO is co-funded and co-managed by three partners—two federal departments (Natural Resources Canada and Indigenous and Northern Affairs Canada) and the Government of Nunavut's Department of Economic Development and Transportation. The CNGO is considered to be Nunavut's geological survey. The office is governed and managed through a three-party operating agreement that has been renewed every five years. This agreement outlines the operational and core funding context provided to the CNGO. Based in Iqaluit, Nunavut, the CNGO has six professional staff members, and initiates and conducts a wide range of geoscience research with partners from other government departments, universities, industry and communities.

Canada-Nunavut Geoscience Office Summary of Activities 2017, Plain language summaries

Mary River Group στο Ταϊ Sound, ΝΑ στο τοπίο του Μαρί της Βόρειας Βαφίν Ο Ισλανδία, Νοναβατ. Το geology of the Pond Inlet–Mary River area, northern Baffin Island, Nunavut; 2.7 στο Φούντ. (Μαρί της Βόρειας Μαρί της Βαφίν Ο Ισλανδία). Ο τόπος του Mary River Group. Το 2.7 στο λίθισμα του Mary River Group. Το στο στοιχείο του 2.9–2.7 στο Mary River Group. Το στο στοιχείο του 3.9 στο Mary River Group. Το στο στοιχείο του 4.1 στο Mary River Group. Το στο στοιχείο του 121.1 στο Mary River Group. Το στο στοιχείο του 0.012% στο Mary River Group. Το 0.012% στο Mary River Group. Το στο στοιχείο του 1960–1980 στο Mary River Group.

Campbell, D.C., MacKillop, K., Jenner, K.A., Ouellette, D., MacQuarrie, M. and Bergeron, D. 2017: Integration of lithological and geotechnical properties of

Nouveaux travaux de cartographie et interprétation des caractéristiques structurales de la zone de cisaillement de Wager Bay, au nord-ouest de la baie d’Hudson, au Nunavut

I. Therriault, H.M. Steenkamp et K.P. Larson

Des travaux de cartographie du substrat rocheux ont été réalisés au cours des mois de juin et juillet 2017 dans la région de la baie Wager, sur la côte nord-ouest de la baie d’Hudson, au Nunavut. Les travaux étaient dirigés par le Bureau géoscientifique Canada-Nunavut (BCGN) mais s’inscrivaient dans le cadre du projet géoscientifique de la région de Tehery-Wager entrepris conjointement par la Commission géologique du Canada (par le biais de l’activité Rae de son programme de géocartographie de l’énergie et des minéraux) et le BCGN. Les travaux sur le terrain ont surtout porté sur la zone de cisaillement de Wager, qui s’étend sur environ 450 km, à partir de l’île de Southampton, en traversant la baie Wager pour se prolonger vers l’ouest, plus loin à l’intérieur des terres. Les zones de cisaillement sont des structures qui se forment le long des bordures de grands blocs de la croûte terrestre aux endroits où ces blocs se sont déplacés en direction différente les uns par rapport aux autres. Les caractéristiques des roches déformées qui en résultent dépendent de la nature de la croûte, ainsi que des degrés atteints par la température et la pression au moment où l’épisode s’est produit. Un des objectifs au cours des travaux de cet été visait à établir les limites de la zone de cisaillement de Wager en se fiant à la découverte de roches très déformées. Un autre objectif était d’examiner les changements que les roches déformées subissent le plus elles se rapprochent du centre de la zone de cisaillement. Des échantillons de roche ont été recueillis afin d’en déterminer la composition, de déceler des traces même microscopiques de déformation et d’établir l’âge des roches en question. Les données provenant des travaux sur le terrain et des analyses contribueront à fournir les réponses à des questions importantes relatives au moment où la zone de cisaillement de Wager s’est formée, à sa durée et à la direction dans laquelle le mouvement s’est produit. Les résultats seront intégrés à des données au sujet de l’âge et de la structure de roches voisines afin d’être en mesure de mieux comprendre l’évolution géologique de la région du nord-ouest de la baie d’Hudson.

Rapport de travaux sur le terrain portant sur la stratigraphie ordovicienne de la presqu’île de Boothia, au Nunavut : contribution à l’activité géoscientifique relative à la région de la presqu’île de Boothia et de l’île Somerset entreprise dans le cadre du projet GEM-2

S. Zhang

Une évaluation des strates ordoviciennes de la presqu’île de Boothia constitue l’une des trois composantes de l’activité géoscientifique relative à la région de la presqu’île de Boothia et de l’île Somerset entreprise dans le cadre de GEM-2. Le présent rapport fait état de travaux antérieurs portant sur la stratigraphie et des coupes géologiques du Paléozoïque de la presqu’île de Boothia, ainsi que de travaux portant sur des coupes ordoviciennes de la presqu’île menés au cours de la campagne sur le terrain en 2017. Ces travaux fourniront des données essentielles permettant d’établir une subdivision plus détaillée de la stratigraphie de ces roches, de fixer l’âge des différentes unités lithologiques et d’établir des corrélations avec d’autres strates semblables ailleurs dans les îles de l’Arctique.

Nouveaux travaux de cartographie et interprétation des caractéristiques structurales de la zone de cisaillement de Wager Bay, au nord-ouest de la baie d'Hudson, au Nunavut

I. Therriault, H.M. Steenkamp et K.P. Larson

Des travaux de cartographie du substrat rocheux ont été réalisés au cours des mois de juin et juillet 2017 dans la région de la baie Wager, sur la côte nord-ouest de la baie d'Hudson, au Nunavut. Les travaux étaient dirigés par le Bureau géoscientifique Canada-Nunavut (BCGN) mais s'inscrivaient dans le cadre du projet géoscientifique de la région de Tehery-Wager entrepris conjointement par la Commission géologique du Canada (par le biais de l'activité Rae de son programme de géocartographie de l'énergie et des minéraux) et le BCGN. Les travaux sur le terrain ont surtout porté sur la zone de cisaillement de Wager, qui s'étend sur environ 450 km, à partir de l'île de Southampton, en traversant la baie Wager pour se prolonger vers l'ouest, plus loin à l'intérieur des terres. Les zones de cisaillement sont des structures qui se forment le long des bordures de grands blocs de la croûte terrestre aux endroits où ces blocs se sont déplacés en direction différente les uns par rapport aux autres. Les caractéristiques des roches déformées qui en résultent dépendent de la nature de la croûte, ainsi que des degrés atteints par la température et la pression au moment où l'épisode s'est produit. Un des objectifs au cours des travaux de cet été visait à établir les limites de la zone de cisaillement de Wager en se fiant à la découverte de roches très déformées. Un autre objectif était d'examiner les changements que les roches déformées subissent le plus elles se rapprochent du centre de la zone de cisaillement. Des échantillons de roche ont été recueillis afin d'en déterminer la composition, de déceler des traces même microscopiques de déformation et d'établir l'âge des roches en question. Les données provenant des travaux sur le terrain et des analyses contribueront à fournir des informations importantes relatives au moment où la zone de cisaillement de Wager s'est formée, à sa durée et à la direction dans laquelle le mouvement s'est produit. Les résultats seront intégrés à des données au sujet de l'âge et de la structure de roches voisines afin d'être en mesure de mieux comprendre l'évolution géologique de la région du nord-ouest de la baie d'Hudson.

Rapport de travaux sur le terrain portant sur la stratigraphie ordovicienne de la presqu'île de Boothia, au Nunavut : contribution à l'activité géoscientifique relative à la région de la presqu'île de Boothia et de l'île Somerset entreprise dans le cadre du projet GEM-2

S. Zhang

Une évaluation des strates ordoviciennes de la presqu'île de Boothia constitue l'une des trois composantes de l'activité géoscientifique relative à la région de la presqu'île de Boothia et de l'île Somerset entreprise dans le cadre de GEM-2. Le présent rapport fait état de travaux antérieurs portant sur la stratigraphie et des coupes géologiques du Paléozoïque de la presqu'île de Boothia, ainsi que de travaux portant sur des coupes ordoviciennes de la presqu'île menés au cours de la campagne sur le terrain en 2017. Ces travaux fourniront des données essentielles permettant d'établir une subdivision plus détaillée de la stratigraphie de ces roches, de fixer l'âge des différentes unités lithologiques et d'établir des corrélations avec d'autres strates semblables ailleurs dans les îles de l'Arctique.

Stratigraphie, spectrométrie gamma et étude prospective de la teneur en uranium du paléosol de Kilohigok, dans les collines Bear Creek, dans la partie ouest du Nunavut

A. Ielpi, S. Michel, J.W. Greenman et L.E. Lebeau

La région de Kitikmeot au Nunavut renferme plusieurs zones susceptibles de receler des roches sédimentaires d'intérêt économique comme de l'uranium, du plomb ou du zinc. Plusieurs secteurs de la région ont fait l'objet de travaux de cartographie géologique au cours des années 1960, 1970 et 1980, et des études géologiques plus ciblées et à plus petite échelle s'imposent. La présente étude, qui s'inscrit dans le cadre du projet géoscientifique du bassin de Kilohigok, porte sur une telle région dans les monts Bear Creek; elle se situe à l'est de Kiluhiqtuq (Bathurst Inlet) et à environ 300 km au sud-ouest d'Iqaluktuuttiaq (Cambridge Bay). Des recherches géologiques effectuées en juillet 2017 ont établi la présence d'une succession de roches sédimentaires mises en place dans des milieux fluviatile et océanique il y a environ deux milliards d'années. Ces roches sédimentaires, qui portent le nom de Groupe de Kimerot, reposent sur des roches métamorphiques qui appartiennent au Supergroupe de Yellowknife âgé d'environ 2,7 milliards d'années.

Les travaux sur le terrain ont surtout porté sur des régions dans lesquelles affluent des zones de contact entre les roches sédimentaires et métamorphiques. Le long de ce contact, il a été possible de procéder à des analyses de la radioactivité à l'aide d'un appareil portatif (un spectromètre à rayons gamma) afin de découvrir des zones recelant d'importantes concentrations de minéraux. Des résultats prometteurs, qui révèlent des niveaux de concentration pouvant atteindre 121,1 parties par million d'uranium (soit 0,012 %), indiquent qu'il serait possible que la région soit propice à la minéralisation en uranium. Des analyses effectuées dans des régions plus éloignées de la zone de contact entre les roches sédimentaires et métamorphiques n'ont pas permis d'y déceler la présence de concentrations importantes en uranium.

Géologie du substrat rocheux précambrien de la région de Pond Inlet et de Mary River, dans la partie nord de l'île de Baffin, au Nunavut

Cet article présente les observations de terrain et les interprétations préliminaires résultant de six semaines de travaux de cartographie géologique dans la région de Pond Inlet et de Mary River, au nord de l'île de Baffin, au cours des mois de juillet et août 2017. Ces travaux, entrepris dans le cadre de l’activité de cartographie régionale du substrat rocheux de la moitié nord de l'île de Baffin du projet de géocartographie de l'énergie et des minéraux (GEM-2) menée par la Commission géologique du Canada, a pour objectif d'améliorer le niveau de connaissances géologiques au sujet de cette région. La zone d'étude consiste en roches granitiques, vieilles de 2,9 à 2,7 milliards d'années, et en roches sédimentaires et volcaniques, vieilles d'environ 2,7 milliards d'années, faisant partie du groupe de Mary River. Ce groupe de roches renferme des gisements de fer, notamment le gisement de Mary River, reconnu pour sa teneur élevée et son tonnage important. La région contient aussi des roches sédimentaires beaucoup plus jeunes (soit d'environ 1,27 à 1,24 milliards d'années) composées de grès, de shale et de calcaires, portant le nom de Supergroupe de Bylot. Ces travaux de cartographie contribuent à améliorer le niveau de compréhension relatif à la géologie du nord de l'île de Baffin, ce qui a des répercussions en ce qui concerne le potentiel en minéraux d'intérêt économique de la région, ainsi qu'à l'assemblage tectonique des terrains de cette région de l'Arctique Canadien.

Observations de terrain du Groupe de Mary River, au sud de la baie Tay, dans la partie nord de l'île de Baffin, au Nunavut : stratigraphie et structure des séquences supracrustales et des unités plutoniques adjacentes

E.R. Bros et S.T. Johnston

Le Groupe de Mary River se compose d'un ensemble de roches vieilles d'environ 2,7 milliards d'années affleurant dans la partie septentrionale de l'île de Baffin. Il s'agit d'un ensemble constitué de roches volcaniques et sédimentaires métamorphisées, de formation ferrièrè et de minerai de fer. Le minerai de fer à teneur élevée est exploité par la Baffinland Iron Mines Corporation à sa mine de Mary River. Alors que ces gisements ont été explorés à fond, les roches non minéralisées de l'endroit n'ont fait l'objet que de quelques études. La zone d'étude se situe en bordure d'un long lac dans l'extrémité sud-ouest de la région de Tuktuliavik, environ 100 km au sud du hameau de Pond Inlet. Aux travaux antérieurs effectués à l'échelle préliminaire par le Bureau géoscientifique Canada-Nunavut, viennent s'ajouter ceux de la Baffinland, puisque la région recèle des unités de formation ferrièrè rubanée. La présente étude fait état des travaux sur le terrain effectués au cours des mois de juillet et août 2017 dans le cadre du projet de deux ans sur la région du nord de l'île de Baffin entrepris par la Commission géologique du Canada.

Les travaux sur le terrain avaient pour objet de cartographier la roche en place affleurant en bordure du long lac situé dans la région de Tuktuliavik, afin d'établir le type de roches qui s'y trouvent ainsi que leur orientation. L'étude offre une description des découvertes qui ont été faites et fait état des caractéristiques structurales qui distinguent ces roches. Des travaux d'analyse en cours de ces roches mèneront à une meilleure compréhension de l'évolution métamorphique et structurale de la région. L'intention est de fournir une base de connaissances relatives au profil géologique du Groupe de Mary River dans la région nord de l'île de Baffin.

Coupe stratigraphique composée de roches carbonatées de la partie intermédiaire du Supergroupe de Bylot exceptionnellement bien exposées le long du détroit de Tremblay, dans la partie nord-ouest de l'île de Baffin, au Nunavut

La région septentrionale des îles de Baffin et Bylot, au Nunavut, renferme des roches sédimentaires très bien conservées datant de plus d'un milliard d'années, aujourd'hui en grande partie exposées dans les falaises qui se dressent au-dessus de l'océan Arctique. Ces anciens sédiments, connus sous le nom de Supergroupe de Bylot, ont été mis en place dans une dépression au sein de la croûte de l'ancien supercontinent Rodinia au cours de moments de transition importants dans le régime tectonique, les cycles géochimiques ou la biosphère de la Terre. Ces roches renferment des spécimens de fossiles les plus anciens d'algue multicellulaire et fournissent des preuves attestant de changements survenus dans la composition chimique de l'océan et de l'atmosphère. La présente étude porte sur une succession presque continue d'affleurements extrêmement bien exposés au nord du hameau de Pond Inlet, en bordure du détroit de Tremblay. Cette succession constituée principalement de roches carbonatées, dont l'épaisseur atteint environ 1700 m, y est décrite et mesurée. Des échantillons ont été recueillis aux fins d'analyses géochimiques et paléontologiques dans le but d'acquérir une meilleure compréhension de l'évolution géologique de cette région et afin d'améliorer le niveau de connaissances au sujet de cette période fascinante de l'histoire de la Terre.

Analyse d'un profil sédimentaire marin de l'Holocène du passage Pond, dans la partie nord de l'île de Baffin, au Nunavut

L.M. Broom, D.C. Campbell et J.C. Gosse

L'analyse de sédiments marins provenant du bras Pond, un fjord du nord de la baie de Baffin, au Nunavut, révèle que des glissements de terrain sous-marins se sont produits dans cette zone. La région se trouve dans une zone de tremblements de terre active dans laquelle se sont produits des tremblements de terre de magnitude 7 et plus au cours du dernier siècle. Ces gros tremblements de terre pourraient déclencher des ruptures de versant dans la région environnante, entraînant ainsi la formation de grandes vagues de mer susceptibles d'endommager les infrastructures et de mettre en péril les collectivités côtières. Ce projet a pour objectif de cartographier l'étendue des dépôts laissés par ces glissements de terrain et en déterminer la taille; il s'agira aussi d'établir quand ils ont été mis en place afin de déterminer approximativement leur fréquence. Les résultats initiaux indiquent qu'au moins une rupture de versant aurait eu lieu tous les huit cent ans dans cette région au cours des derniers trois mille ans et les recherches se poursuivent afin d'ajouter de nouvelles données au dossier. Le hameau de Pond Inlet (population 1617) est situé immédiatement au sud de la zone d'étude et une meilleure compréhension des facteurs régissant la fréquence des ruptures de versant dans cette région sous-marine aidera à améliorer de façon importante la capacité d'évaluer les risques qu'elles posent aux collectivités côtières.

Intégration des propriétés lithologiques et géotechniques de sédiments marins de la baie de Baffin, au Nunavut

L’île de Baffin compte une population côtière et la région est soumise à une demande toujours croissante d'utilisation du fond marin à diverses fins, qu'il s'agisse de la pêche, de zones marines protégées, de l'architecture naturelle du fond marin ou de la présence possible de ressources naturelles. Cette région, dont la géologie est très complexe, a été fortement perturbée par le passage des glaciers et les fréquents tremblements de terre qui s'y sont produits. Depuis 2012, la Commission géologique du Canada dirige un projet de recherche en vue d'étudier les géorisques marins dans la région. L'approche adoptée combine la forme du fond marin, les données géologiques de subsurface recueillies à faible profondeur et les propriétés techniques (résistance et stabilité) du fond marin afin d'établir l'étendue des risques, leur période de récurrence, les mécanismes responsables de leur déclenchement et la possibilité que des faillances se produisent à l'avenir.

Des carottes de sédiments provenant de sections « normales » du fond marin le long de la bordure peu profonde de la baie de Baffin révèlent un modèle homogène qui englobe les quarante mille dernières années du profil sédimentaire de la région. Les sédiments ont été mis en place au cours de l'ère glaciaire ainsi que peu après le retrait des glaciers de la région. Les résultats de l'analyse des propriétés techniques du fond marin attestent du fait qu'il s'agit de sédiments variant de normalement consolidés à peu consolidés. Une unité qui pourrait s'avérer instable est associée à de la boue brune mise en place vers la fin du dernier âge glaciaire, soit il y a environ quatorze mille ans. Ces résultats pourraient aider à prévoir les endroits les plus susceptibles d'être sujets à des glissements sous-marins à l'avenir.

Températures du sol et conditions propres au pergélisol dans la région de Rankin Inlet, dans la partie sud du Nunavut

G.A. Oldenborger, O. Bellehumeur-Génier, N. Short, T. Tremblay et A.-M. LeBlanc

Le long de la baie d'Hudson, dans la région de Kivaliq, au Nunavut, le pergélisol et la glace de sol sont des éléments importants du paysage et peuvent avoir une incidence importante sur les infrastructures terrestres. Des travaux sur le terrain ont été effectués à Rankin Inlet afin de recueillir des renseignements dans cette région au sujet des températures du sol, des conditions liées à la glace de sol et du tassement dû au dégel. Au cours de récents travaux sur le terrain, plusieurs sites de surveillance de la température du sol ont été installés et des données géoscientifiques de nature diverse ont été recueillies au moyen de mesures prises soit au sol, soit à l'aide d'instruments aéroportés et satellitaires. Bien que fondé sur des données préliminaires rassemblées au cours d'une période d'enregistrement restreinte, les températures au sol enregistrées pendant l'été 2017 indiquent que le pergélisol est actuellement plus chaud que n'en font état les états des données historiques. D'autres observations fournissent de l'information sur les différents types de terrain susceptibles à la dégradation du pergélisol et révèlent comment les levés géophysiques, aéroportés et satellitaires pourraient servir aux travaux de cartographie de ces régions.

Étude comparative de la pétrogenèse de la pierre à sculpter d'excellente qualité provenant de la carrière de Korok Inlet, dans la partie sud de l'île de Baffin, et des îles Belcher, au Nunavut

L. Timlick, H.M. Steenkamp, et A. Camacho

La pierre à sculpter est un bien de valeur commerciale et culturelle précieux pour les communautés du Nord. Les carrières au Nunavut sont rares et, compte tenu de la demande croissante pour la pierre à sculpter, il est nécessaire de trouver de nouveaux gisements ainsi que de mettre en valeur les carrières existantes. Des échantillons de pierre à sculpter provenant de deux carrières de la région de Kïkîqtailuk, au Nunavut, ont fait l'objet d'analyses afin d'établir leurs caractéristiques minérales et chimiques dans le but de mieux comprendre comment ces gisements se sont formés.

La pierre à sculpter provenant de la carrière communautaire (Quillisajaniavvik) dans les îles Belcher doit sa formation à du magma sous la surface de la Terre qui s'est frayé un chemin à travers la Formation de Costello. La chaleur et les fluides qui ont accompagné cet événement ont réagi avec les roches carbonatées de la Formation de Costello et le résultat fut la création d'une roche à talc et à carbonate dolomitique, qui se compose de dolomie, de calcite, de tacle, de chlorite et, parfois, de quartz; ce produit se prête aisément à la sculpture. La pierre à sculpter provenant de la carrière de Korok Inlet (Kangiqsukutaaq), située près de Cape Dorset dans la région sud de l'île de Baffin, est une roche connue sous le nom de serpentinite, qui se compose de lizardite, de magnétite et, parfois, de brucite, d'hydrotalcite et de calcite. La pierre à sculpter de Korok Inlet est sans doute le produit de l'interaction entre des fluides chauds, riches en minéraux dissous, et le marbre ou le silicate calcique du Groupe de Lake Harbour. Il est important de noter que les échantillons de pierre à sculpter provenant de ces endroits n'ont pas révélé la présence de minéraux du type amianté. Selon les sculpteurs inuits, les gisements de pierre à sculpter des îles Belcher et de Korok Inlet renferment tous deux de la pierre à sculpter d'excellente qualité, et ce malgré qu'ils soient le produit d'événements géologiques tout à fait différents.

Cartographie géologique et évaluation des ressources du gisement de pierre à sculpter de Koonark, dans la partie nord de l'île de Baffin, au Nunavut

H.M. Steenkamp, R.A. Elgin et I. Therriault

Le Bureau géoscientifique Canada-Nunavut a été mis sur pied en septembre 1999, peu après la fondation du Nunavut. Le Bureau géoscientifique Canada-Nunavut et la Qikiqtani Inuit Association ont cartographié la géologie du gisement de pierre à sculpter de Koonark dans la région septentrionale de l'île de Baffin afin d'évaluer non seulement le volume, mais aussi les caractéristiques de la pierre à l'état brut. La région cartographiée englobe des roches sédimentaires et volcaniques du Groupe de Mary River, datant d'environ 2,8 à 2,7 milliards d'années; ces roches sont situées en bordure de la faille de Central Borden, ce qui a pour effet de les mettre en contact avec des roches sédimentaires vieilles de 541 à 443 millions d'années.

Quatre zones ont été identifiées comme pouvant receler de grandes quantités de pierre à sculpter, soit les sites de Koonark Mountain, de Valley Side, d'Upper Koonark et de Scree Slope. La pierre provenant de chaque site se distingue par sa texture, sa composition minérale et sa surface polie uniques. Ces sites renferment en tout quelque 80 240 tonnes de pierre à sculpter pouvant être exploitées en surface et il est fort probable que d'autres ressources en pierre à sculpter se trouvent sous la couche de sol superficielle dans cette région. En fonction des renseignements provenant des travaux de cartographie et de l'évolution géologique de la région, il semblerait que la pierre à sculpter aurait été formée lorsque des fluides chauds riches en minéraux auraient circulé dans certaines des roches volcaniques du Groupe de Mary River et auraient altéré ses dernières; ceci aurait eu lieu au même moment que la formation de la faille de Central Borden.

Certains facteurs importants pouvant avantage la mise en valeur éventuelle d'une carrière de pierre à sculpter au gisement de Koonark incluent le fait qu'elle pourrait profiter de l'accès à une route existante et aux installations portuaires voisines de la mine de Mary River. Cependant, il faudrait également faire face aux défis que posent la topographie abrupte de l'endroit et les problèmes liés à l'accès saisonnier au site. Tout projet d'exploration en vue de trouver des gisements semblables de roche à sculpter dans cette région devrait se concentrer sur l'identification d'endroits où se manifestent à la fois des failles importantes, des roches volcaniques du Groupe de Mary River et des roches sédimentaires plus récentes.

État des réserves en pierre à sculpter des carrières de la région de Qikiqtaaluk, au Nunavut, et répercussions possibles

R.A Elgin

Des travaux intensifs d'abattage à la pioche entrepris depuis les années 1960 se sont soldés par la mise en place de plusieurs carrières gérées par des communautés partout dans la région de Qikiqtaaluk, au Nunavut. Des dispositions particulières de l'Accord sur les revendications territoriales du Nunavut ont permis le libre accès à la pierre à sculpter, qui continue d'être une ressource d'importance culturelle particulière ainsi qu'une source économique vitale pour de nombreux artisans inuits. Malheureusement, plusieurs sites réussissent à peine à répondre à la demande en raison de leurs hautes parois et du volume de débris généré par les activités antérieures. Compte tenu de l'importance de ces sites au développement futur de l'industrie de la pierre à sculpter, la Qikiqtaani Inuit Association a mis sur pied un projet qui vise à évaluer les carrières, non seulement en vue de répondre aux préoccupations en matière de sécurité, mais aussi afin de déterminer la possibilité de procéder à la mise en valeur de plusieurs des principales carrières de pierre à sculpter gérées par des communautés.

Des visites ont été effectuées à des carrières au cours des années 2016 et 2017, organisées avec le Bureau géoscientifique Canada-Nunavut, le Gouvernement du Nunavut et l'Université du Manitoba. Ces visites ont permis de réaliser des travaux de cartographie géologique et topologique, et de cueillir des échantillons aux fins d'analyses géochimiques dans le but de mieux comprendre les facteurs régissant la taille, la formation et la répartition des gisements de pierre à sculpter d'excellente qualité. Le présent rapport porte sur les résultats du levé topologique et fait état des réserves restantes à chacun des principaux sites accessibles aux collectivités du sud de l'île de Baffin. Cette information peut servir à déterminer la durée de vie utile restante des carrières et à établir s'il reste suffisamment de pierre pour qu'il soit possible d'en distribuer aux collectivités voisines.

Le Bureau géoscientifique Canada-Nunavut : regard sur le passé et perspectives d'avenir

L.J. Ham

Le Bureau géoscientifique Canada-Nunavut a été mis sur pied en septembre 1999, peu après la fondation du Nunavut. Le Bureau est financé et dirigé conjointement par trois partenaires, soit deux ministères fédéraux (Ressources naturelles Canada et Affaires autochtones et du Nord Canada) et le ministère du Développement économique et des Transports relevant du Gouvernement du Nunavut. Le Bureau géoscientifique Canada-Nunavut est considéré l'organisme de fait chargé des levés géologiques du Nunavut. Le Bureau est régi et géré en fonction d'un accord d'exploitation tripartite qui a été renouvelé tous les cinq ans. Cet accord décrit les conditions associées à l'exploitation et au financement de base dont jouit le Bureau. Le Bureau géoscientifique Canada-Nunavut est situé à Iqaluit, au Nunavut, et son complément de personnel professionnel compte six personnes grâce auxquelles il est en mesure d'entreprendre et de mener une vaste gamme de travaux de recherche géoscientifique de nature collaborative avec des partenaires provenant d'autres ministères gouvernementaux, d'universités et de diverses collectivités.

The **Canada-Nunavut Geoscience Office** conducts new geoscience mapping and research, supports geoscience-capacity building, disseminates geoscience information and develops collaborative geoscience partnerships for Nunavut.

www.cngo.ca